Применение Ардуино гироскопа на основе микросхемы mpu 6050

Ардуино – популярнейшая система для одноимённых МК, позволяющая любому желающему, даже без специального образования, воплотить в жизнь проект, о котором он давно мечтал. Будь то автоматизированная теплица или простая система выключения света по хлопку в умном доме.

Но естественно, сам микроконтроллер не способен выполнять все функции, и для этого к нему необходимо покупать датчики, коих на рынке более нескольких десятков разновидностей. Об одном из таких, а именно мы рассмотрим гироскоп Ардуино, и пойдёт речь. Что это такое, в каких проектах его можно применить и как настроить опишем ниже.

А если вам хочется больше практики - посмотрите наши уроки: Подключаем гироскоп-акселерометр (MPU-6050) к плате Arduino или Гироскоп с помощью Arduino 101.

Назначение связки гироскоп и акселерометр

Для начала давайте разберёмся, зачем Arduino mpu 6050 (Gy-521) вообще нужен и что собой представляет гироскоп-акселерометр в целом. Такой датчик все мы видели в смартфонах, и там он выполняет следующие функции:

  1. Позволяет замерять шаги. Акселерометр способен отслеживать резкие движения устройства, а в зависимости от его настройки и чувствительности, считать некоторые из них за шаг.
  2. Измеряет поворот экрана. Здесь уже оба устройства работают в паре. Ведь когда вы поворачиваете смартфон набок, картинка должна изменить свою ориентацию для пользователя, и лишь с помощью гироскопа удаётся определить угол наклона, под которым ПО это должно будет сделать.
  3. Компас, карты и навигация. Акселерометр с гироскопом позволяют определить ориентацию устройства в пространстве, что необходимо в различных приложениях для мобильной навигации.

Вот и выходит, что данный датчик подойдёт для тех проектов, в которых вам необходимо измерить ориентацию или движения прибора в пространстве, без точных данных о его местоположении. Это может быть, как самодельная линейка со встроенным уровнем, чтобы пользователь мог определить, насколько ровно стоит та или иная мебель, так и устройство для кровати, встроенной в стену, включающее свет, когда она выдвигается.

Но применить модуль можно и с большей выдумкой, например, для измерения количества оборотов в секунду и регуляции мощности охладительной системы или автоматизации различных процессов.

Всё зависит исключительно от вашей выдумки и конкретного проекта.

Чаще всего гироскоп для Ардуино применяется в системах автоматизации под так называемые «смартхаусы» (умные дома - прим. ред.), являясь своеобразным переключателем. Передавая определённые данные в МК, который затем отправляет их по блютуз-модулю к другому устройству, он может управлять всей техникой в доме.

Ещё один простой способ применения – использование вместо датчика движения на дверях, для включения света и кондиционирования, когда вы возвращаетесь домой.

Комплектующие

Создаётся данный датчик или МК, в зависимости от того, что вы собрались приобретать, из компонентов ATmega328.

Распиновка модуля Arduino MPU 6050
Распиновка модуля Arduino MPU 6050

Так, в нём имеются:

  1. 14 штук различных пинов и цифровых выходов, половина из которых являются ШИМ-выходами.
  2. Специальные кварцевые резонаторы до 16 МГц мощностью.
  3. Встроенный вход под usb-кабель, который позволит вам сэкономить не только время, но и деньги, которые вы могли бы потратить на покупку адаптера.
  4. Контакты и распиновка для стандартного питания с нулем, фазой и заземлением.
  5. Контакты для сброса до заводских настроек, при которых весь машинный код и данные будут стёрты. Это полезно в том случае, если вы напортачили с программой и модуль превратился в бесполезную груду железа, и просто как экономия времени, если необходимо сменить прошивку.
  6. ICSP контакт, который необходим для того, чтобы запрограммировать машинный код, который будет находиться внутри системы.

Все эти компоненты и составляют Arduino гироскоп, позволяя ему выполнять свои базовые функции. Но как же запрограммировать систему, если вы до этого не имели опыта работа с данными МК?

Сборка

Здесь всё зависит от используемого вами интерфейса, например, для I2C от Ардуино пригодятся контакты: A4, A5, которые являются SDA и SCL входами соответственно.

Для нормального функционирования всей этой системы необходимо будет использовать wire библиотеку в коде.

Gy-521 (mpu6050) Arduino (Uno)
VCC 3.3 V
GND GND
SCL A5
SDA A4

Также будьте готовы к тому, что распиновка может оказаться не самой удачной, поэтому не стоит делать корпус для устройства впритык, пока вы не подключите и не увидите реальные размеры вашего проекта.

Питание модуля строго 3.3В!

Программы

Без программы модуль будет не более чем грудой железа, которая не выполнит ни одной функции. Базовые библиотеки для взаимодействия с другими МК можно найти на официальном сайте или в интернете, но, помимо них, вам потребуется вспомогательный код. С его помощью можно настроить взаимодействие между акселерометром и тем же блютуз модулем, без которого, в большинстве проектов, он станет бесполезен.

Мы воспользуемся готовой библиотекой для Arduino MPU 6050, которую написал Джефф Роуберг.

Скачать библиотеку MPU6050

В целом, многие поступают и другим путем, правда далеко не все умеют программировать на С++, поэтому перед пользователем, который хочет написать программу для работы с гироскопом, открывается два пути:

  1. Найти уже готовый шаблон или библиотеку. Для этого потребуется всего пара секунд и подключение к интернету, но не стоит забывать, что готовые решения пишутся, зачастую, столь же неопытными инженерами. Поэтому, по возможности, проверяйте, насколько качественный код вы скачиваете. Смотрите отзывы о библиотеке, если есть такая возможность, и старайтесь скачивать их на зарубежных форумах. Там и выбор будет больше, и куда выше вероятность найти действительно качественную библиотеку.
  2. Написать функции и методы для работы системы своими силами. Этот вариант подойдёт лишь тем, кто ранее имел дело с языком С++ и понимает все нюансы работы с Ардуино. Все необходимые вспомогательные библиотеки можно скачать в интернете, а всё остальное вы можете подогнать под свои нужды. Такой способ идеально подходит для тех, кто хочет реализовать собственный проект, не имеющий аналогов. Ведь в таком случае найти заготовленный код под него будет крайне сложно, даже если быть готовым править большую его часть.

Вернемся к нашей библиотеке. После того как вы скачали библиотеку гироскопа вам нужно сделать следующее.

Нужно распаковать/извлечь эту библиотеку, взять папку с именем «MPU6050» и поместить ее в папку «library» в Arduino. Для этого перейдите в место, где вы установили Arduino (Arduino -> libraries) и вставьте свою папку в папку библиотек. Возможно, вам также придется сделать то же самое, чтобы установить библиотеку I2Cdev, если у вас еще нет ее на вашем Ардуино. Для её установки выполните ту же процедуру, что и выше. Вы можете скачать I2Cdev на нашем сайте по этой ссылке.

Если вы всё сделали правильно, при открытии IDE Arduino вы можете увидеть «MPU6050» в:

Файл -> Примеры.

Затем откройте пример программы из меню:

Файл -> Примеры -> MPU6050 -> Примеры -> MPU6050_DMP6.

Затем вы должны загрузить этот код в свой Ардуино. После загрузки кода откройте последовательный монитор и установите скорость передачи в бодах как 115200. Затем проверьте, видите ли вы что-то вроде «Инициализация устройств I2C ...» ("Initializing I2C devices ...") на последовательном мониторе.

Если вы этого не сделаете, просто нажмите кнопку сброса. Теперь вы увидите строку с надписью «Отправить символы, чтобы начать программирование и демо DMP» ("Send any character to begin DMP programming and demo"). Просто введите любой символ на последовательном мониторе и отправьте его, и вы должны начать видеть значения поступающие с MPU 6050.

Также можно, например, воспользоваться скетчем ниже, который пересчитывает координату X и Y и выводит в консоль (монитор последовательного порта):

#include <Wire.h>
#include "Kalman.h"
Kalman kalmanX;
Kalman kalmanY;
uint8_t IMUAddress = 0x68;
/* IMU Data */
int16_t accX;
int16_t accY;
int16_t accZ;
int16_t tempRaw;
int16_t gyroX;
int16_t gyroY;
int16_t gyroZ;
double accXangle; // Angle calculate using the accelerometer
double accYangle;
double temp;
double gyroXangle = 180; // Angle calculate using the gyro
double gyroYangle = 180;
double compAngleX = 180; // Calculate the angle using a Kalman filter
double compAngleY = 180;
double kalAngleX; // Calculate the angle using a Kalman filter
double kalAngleY;
uint32_t timer;
void setup() {
  Wire.begin();
  Serial.begin(9600);
  i2cWrite(0x6B,0x00); // Disable sleep mode      
  kalmanX.setAngle(180); // Set starting angle
  kalmanY.setAngle(180);
  timer = micros();
}
void loop() {
  /* Update all the values */
  uint8_t* data = i2cRead(0x3B,14);
  accX = ((data[0] << 8) | data[1]);
  accY = ((data[2] << 8) | data[3]);
  accZ = ((data[4] << 8) | data[5]);
  tempRaw = ((data[6] << 8) | data[7]);
  gyroX = ((data[8] << 8) | data[9]);
  gyroY = ((data[10] << 8) | data[11]);
  gyroZ = ((data[12] << 8) | data[13]);
  /* Calculate the angls based on the different sensors and algorithm */
  accYangle = (atan2(accX,accZ)+PI)*RAD_TO_DEG;
  accXangle = (atan2(accY,accZ)+PI)*RAD_TO_DEG;  
  double gyroXrate = (double)gyroX/131.0;
  double gyroYrate = -((double)gyroY/131.0);
  gyroXangle += kalmanX.getRate()*((double)(micros()-timer)/1000000); // Calculate gyro angle using the unbiased rate
  gyroYangle += kalmanY.getRate()*((double)(micros()-timer)/1000000);
  kalAngleX = kalmanX.getAngle(accXangle, gyroXrate, (double)(micros()-timer)/1000000); // Calculate the angle using a Kalman filter
  kalAngleY = kalmanY.getAngle(accYangle, gyroYrate, (double)(micros()-timer)/1000000);
  timer = micros();
Serial.println();
    Serial.print("X:");
    Serial.print(kalAngleX,0);
    Serial.print(" ");
    Serial.print("Y:");
    Serial.print(kalAngleY,0);
    Serial.println(" ");
  // The accelerometer's maximum samples rate is 1kHz
}
void i2cWrite(uint8_t registerAddress, uint8_t data){
  Wire.beginTransmission(IMUAddress);
  Wire.write(registerAddress);
  Wire.write(data);
  Wire.endTransmission(); // Send stop
}
uint8_t* i2cRead(uint8_t registerAddress, uint8_t nbytes) {
  uint8_t data[nbytes];
  Wire.beginTransmission(IMUAddress);
  Wire.write(registerAddress);
  Wire.endTransmission(false); // Don't release the bus
  Wire.requestFrom(IMUAddress, nbytes); // Send a repeated start and then release the bus after reading
  for(uint8_t i = 0; i < nbytes; i++)
    data [i]= Wire.read();
  return data;
}

Когда X и Y равны 180 - гироскоп в горизонтальной плоскости:

Вот вы определились с выбором и уже написали всё необходимое ПО, пришла пора его протестировать. Для этого, естественно, необходимо собрать всё вместе.

Наладка

Далее наступает самый ответственный этап – отладка программного кода. Здесь вам необходимо подключить питание к прибору, а сам прибор – к компьютеру, чтобы следить за строками в консоли. Прогоните несколько базовых функций и посмотрите, не будет ли ошибок или багов. Если они возникают, то воспользуйтесь любым удобным методом дебагинга.

Самый простой вариант – использовать для ввода переменные, которые вычисляются рандомным образом, и смотреть, как код будет вести себя в различных ситуациях.

Тестирование

После отладки необходимо провести тестирование. В чём разница? При тестировании вы точно знаете, что программный код работает без лагов и багов, но вам необходимо убедиться, что в нём нет логических ошибок.

С акселерометром и гироскопом проще всего использовать программы 3Д рендеринга показаний, вроде ShowGY521Data, которые позволят в реальном времени увидеть, как железо позиционируется в пространстве. В случае неисправностей всегда можно подправить нулевой уровень и уменьшить чувствительность акселерометра, который также влияет на конечную модель отображения устройства.

16 апреля 2018 в 15:59 | Обновлено 7 декабря 2019 в 02:16 (редакция)
Опубликовано:
Уроки,

1 комментарий

  1. Cергей
    25 ноября 2022 в 22:07

    Проблема такова: когда я компилирую скетч ( под Arduino Mega2560 ) то у меня компилятор выдает ошибку и говрит что не знает 2 и 3 строчки кода, допилите её и потом выкладывайте

    Ответить

Добавить комментарий

Ваш E-mail не будет никому виден. Обязательные поля отмечены *